Part Number Hot Search : 
UMA1018 1N5356B 00010 WRA1212 L0G226M 8M000 BSS126 ALE12F48
Product Description
Full Text Search
 

To Download IRF1010NPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRF1010NPBF hexfet ? power mosfet  parameter typ. max. units r jc junction-to-case ??? 0.85 r cs case-to-sink, flat, greased surface 0.50 ??? c/w r ja junction-to-ambient ??? 62 thermal resistance 1 v dss = 55v r ds(on) = 11m ? i d = 85a  s d g to-220ab advanced hexfet ? power mosfets from international rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. this benefit, combined with the fast switching speed and ruggedized device design that hexfet power mosfets are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. the to-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. the low thermal resistance and low package cost of the to-220 contribute to its wide acceptance throughout the industry.  advanced process technology  ultra low on-resistance  dynamic dv/dt rating  175c operating temperature  fast switching  fully avalanche rated  lead-free description pd - 94966 absolute maximum ratings parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 85  i d @ t c = 100c continuous drain current, v gs @ 10v 60 a i dm pulsed drain current  290 p d @t c = 25c power dissipation 180 w linear derating factor 1.2 w/c v gs gate-to-source voltage 20 v i ar avalanche current  43 a e ar repetitive avalanche energy  18 mj dv/dt peak diode recovery dv/dt  3.6 v/ns t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c mounting torque, 6-32 or m3 srew 10 lbf?in (1.1n?m) www.kersemi.com
 2 s d g parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) ??? ??? showing the i sm pulsed source curre nt integral reverse (body diode)  ??? ??? p-n junction diode. v sd diode forward voltage ??? ??? 1.3 v t j = 25c, i s = 43a, v gs = 0v  t rr reverse recovery time ??? 69 100 ns t j = 25c, i f = 43a q rr reverse recovery charge ??? 220 230 nc di/dt = 100a/s  t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) source-drain ratings and characteristics 85  290   starting t j = 25c, l = 270h r g = 25 ? , i as = 43a, v gs =10v (see figure 12)   repetitive rating; pulse width limited by max. junction temperature. ( see fig. 11 )   i sd  43a  di/d   210a/s, v dd   v (br)dss , t j 175c  pulse width 400s; duty cycle 2%.  this is a typical value at device destruction and represents operation outside rated limits.  this is a calculated value limited to t j = 175c .  calculated continuous current based on maximum allowable junction temperature. package limitation current is 75a. parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 55 ??? ??? v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.058 ??? v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance ??? ??? 11 m ? v gs = 10v, i d = 43a  v gs(th) gate threshold voltage 2.0 ??? 4.0 v v ds = v gs , i d = 250a g fs forward transconductance 32 ??? ??? s v ds = 25v, i d = 43a  ??? ??? 25 a v ds = 55v, v gs = 0v ??? ??? 250 v ds = 44v, v gs = 0v, t j = 150c gate-to-source forward leakage ??? ??? 100 v gs = 20v gate-to-source reverse leakage ??? ??? -100 na v gs = -20v q g total gate charge ??? ??? 120 i d = 43a q gs gate-to-source charge ??? ??? 19 nc v ds = 44v q gd gate-to-drain ("miller") charge ??? ??? 41 v gs = 10v, see fig. 6 and 13 t d(on) turn-on delay time ??? 13 ??? v dd = 28v t r rise time ??? 76 ??? i d = 43a t d(off) turn-off delay time ??? 39 ??? r g = 3.6 ? t f fall time ??? 48 ??? v gs = 10v, see fig. 10  between lead, ??? ??? 6mm (0.25in.) from package and center of die contact c iss input capacitance ??? 3210 ??? v gs = 0v c oss output capacitance ??? 690 ??? v ds = 25v c rss reverse transfer capacitance ??? 140 ??? pf ? = 1.0mhz, see fig. 5 e as single pulse avalanche energy  ??? 1030  250  mj i as = 4.3a, l = 270h nh electrical characteristics @ t j = 25c (unless otherwise specified) l d internal drain inductance l s internal source inductance ??? ??? s d g i gss ns 

i dss drain-to-source leakage current www.kersemi.com
 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 1 10 100 1000 0.1 1 10 100 20s pulse width t = 25 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 1 10 100 1000 0.1 1 10 100 20s pulse width t = 175 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 1 10 100 4 6 8 10 12 v = 25v 20s pulse width ds v , gate-to-source voltage (v) i , drain-to-source current (a) gs d t = 25 c j t = 175 c j -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 2.5 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 85a www.kersemi.com
 4 fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0 20 40 60 80 100 120 0 4 8 12 16 20 q , total gate charge (nc) v , gate-to-source voltage (v) g gs for test circuit see figure i = d 13 43a v = 11v ds v = 27v ds v = 44v ds 0.1 1 10 100 1000 0.0 0.6 1.2 1.8 2.4 v ,source-to-drain voltage (v) i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 175 c j 1 10 100 v ds , drain-to-source voltage (v) 0 1000 2000 3000 4000 5000 6000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 1 10 100 1000 v ds , drain-tosource voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec www.kersemi.com
 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature v ds 90% 10% v gs t d(on) t r t d(off) t f  
 1     0.1 %        + -    
 
    
   25 50 75 100 125 150 175 0 20 40 60 80 100 t , case temperature ( c) i , drain current (a) c d limited by package 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) www.kersemi.com
 6 q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -   
   
 
                  
 t p v (br)dss i as       !  "  #$  25 50 75 100 125 150 175 0 100 200 300 400 500 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 18a 30a 43a r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs www.kersemi.com
 7  
       p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - -      ?   ?    ?     !"  
% #!!$#"!!" ? $%&  ? '(  ? $%$)*  #"+,  %  "(!+  +( #-   &' %%%   .
 +$*!$/ !!"    for n-channel  hexfet ? power mosfets www.kersemi.com
 8 lead assignments 1 - gate 2 - drain 3 - source 4 - drain - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.160) 3.55 (.140) 1.15 (.045) min 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.36 (.014) m b a m 4 1 2 3 notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 3 outline conforms to jedec outline to-220ab. 2 controlling dimension : inch 4 heatsink & lead measurements do n ot include burrs. hexfet 1- gate 2- drain 3- source 4- drain lead assignments igbts, copack 1- gate 2- collector 3- emitter 4- collector 

 dimensions are shown in millimeters (inches) 

  
 example: in the assembly line "c" t his is an irf 1010 lot code 1789 as s e mb le d on ww 19, 1997 part number as s e mb l y lot code dat e code ye ar 7 = 1997 line c week 19 logo re ct if ie r int e rnat ional note: "p" in assembly line position indicates "lead-free" www.kersemi.com


▲Up To Search▲   

 
Price & Availability of IRF1010NPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X